latte-integers.divides

The divisibility relation defined on ℤ.

divides

(divides [m int] [n int])
(exists [p int] (= (* m p) n))

Definition: The divisibility relation. (divides m n) says that m divides n.

divides-nat-antisym

(divides-nat-antisym [m int] [n int])
(==> (elem m nat) (elem n nat) (divides m n) (divides n m) (= m n))

Theorem: Antisymmetry of divisibility only applies to naturals.

divides-one

(divides-one [n int])
(divides one n)

Theorem:

divides-opp

(divides-opp [m int] [n int])
(==> (divides m n) (divides (-- m) n))

Theorem:

divides-refl

(divides-refl [n int])
(divides n n)

Theorem:

divides-trans

(divides-trans [m int] [n int] [p int])
(==> (divides m n) (divides n p) (divides m p))

Theorem:

divides-zero

(divides-zero [n int])
(divides n zero)

Theorem:

divides-zero-conv

(divides-zero-conv [n int])
(==> (divides zero n) (= n zero))

Theorem:

divides-zero-zero

(divides-zero-zero)
(divides zero zero)

Theorem: