latte-integers.divides
The divisibility relation defined on ℤ.
divides
(divides [m int] [n int])(exists [p int] (= (* m p) n))
Definition: The divisibility relation. (divides m n) says that m divides n.
divides-nat-antisym
(divides-nat-antisym [m int] [n int])(==> (elem m nat) (elem n nat) (divides m n) (divides n m) (= m n))
Theorem: Antisymmetry of divisibility only applies to naturals.
divides-one
(divides-one [n int])(divides one n)
Theorem:
divides-opp
(divides-opp [m int] [n int])(==> (divides m n) (divides (-- m) n))
Theorem:
divides-refl
(divides-refl [n int])(divides n n)
Theorem:
divides-trans
(divides-trans [m int] [n int] [p int])(==> (divides m n) (divides n p) (divides m p))
Theorem:
divides-zero
(divides-zero [n int])(divides n zero)
Theorem:
divides-zero-conv
(divides-zero-conv [n int])(==> (divides zero n) (= n zero))
Theorem:
divides-zero-zero
(divides-zero-zero)(divides zero zero)
Theorem: